再エネ設備情報及び省エネルギー対策の取組内容の公表資料

	【太陽電池モジュール】
導入した設備の概要	 ・メーカー名:ネクストエナジー・アンド・リソース株式会社
	・型式名:NER108M410B-MD
	- ・1 枚あたりの公称最大出力:410W
	 ・設置枚数:30 枚
	 ・公称最大出力合計:12.30kW
	【パワーコンディショナ】
	・型式名:SPSS-55E-NX
	- ・台数:2 台
	・定格出力合計:11.00kW
導入場所	 白元アース株式会社 足立本社ビル
	東京都足立区本木 2-4-23
導入目的	白元アース株式会社足立本社ビルに太陽光発電設備を導入し、平時の温室効果ガ
	ス排出抑制に加え、足立本社ビルで自家消費することにより停電時に必要な電力
	供給等の機能が発揮できるようになり、停電時の事業の継続性の向上に寄与する。
	また、電力系統への負荷軽減を図る。
その他の事業者の 再エネ設備導入の参考 になる情報	【想定電力消費量と想定発電電力量】
	・年間想定電力消費量:182,734kWh/年
	・年間想定発電電力量:14,166kWh/年
	・「年間想定電力消費量」に対する「年間想定発電電力量」の比率:7.8%
	【温室効果ガス排出抑制効果】
	・太陽電池を利用して、日光を直接的に電力に変換する。発電そのものには燃料
	が不要で、運転中は温室効果ガスを排出しない。非常に少ない排出量で電力を
	供給する。
	【副次効果】
	・環境問題への社会的な貢献につながる
	・電気代の削減
	・メンテナンス等にかかる手間が比較的に少ない
省エネルギー対策の 取組内容	・高効率空調設備の導入(EHP)
	・照明器具の LED 化
	・省工ネ意識の啓蒙
	・デマンド監視装置の設置